Effect of Sodium Hypochlorite on Push-out Bond Strength of Four Calcium Silicate-based Endodontic Materials when used for repairing Perforations on Human Dentin: An in vitro Evaluation


This study aimed to evaluate the push-out bond strength of NeoMTA Plus (NMTA), EndoSequence root repair material fast set putty (ERRMF), biodentine (BD), and ProRoot white mineral trioxide aggregate (PMTA) when used as perforation repair materials after exposure to 2.5% sodium hypochlorite (NaOCl) during the early setting phase.

Horizontal midroot sections were prepared from single-rooted human teeth. Sections (n = 144) were randomly divided into four groups: PMTA, BD, NMTA, and ERRMF. Materials were condensed and allowed to set for 10 minutes. The groups were further divided into two subgroups. The NaOCl group included specimens that were immersed in 2.5% NaOCl for 30 minutes, and the control group included specimens on which a wet cotton pellet was placed over the test material. After 48 hours, the highest force applied to the materials at the time of dislodgement was recorded. Slices were then examined under a digital microscope to evaluate the nature of the bond failure. The surfaces of two specimens from each subgroup were observed by scanning electron microscopy. Data were statistically analyzed with two-way and one-way analysis of variances, independent t-tests, and chi-square tests. The statistical significance was set at 0.05.

In NaOCl-treated groups, PMTA showed a significantly higher push-out bond strength than the other three materials (p = 0.00). In the control groups, the bond strength of BD was significantly higher than that of PMTA, ERRMF, and NMTA (p < 0.05). Compared with the control group, NaOCl treatment significantly increased the push-out bond strength of PMTA (p = 0.00) and ERRMF (p = 0.00) and significantly reduced the bond strength of BD (p = 0.00) and NMTA (p = 0.03). None of the specimens showed an adhesive type of failure. The majority of the samples exhibited a cohesive failure type. Morphological observations revealed that the surfaces exhibited cubic crystals. In ERRMF, the crystals were few in number. Sodium hypochlorite enhanced the crystallization of NMTA.

The push-out bond strengths of PMTA and ERRMF were significantly increased after exposure to 2.5% NaOCl in the early setting phase, and those of BD and NMTA were significantly decreased.


Leave a Reply

Your email address will not be published.

NeoMTA Plus is a stainproof, tricalcium silicate-based bioactive cement that can be used universally for vital pulp and other endodontic indications in primary and permanent teeth. NeoMTA Plus is a bioceramic cement that triggers the healing process. With NeoMTA Plus, general dentists, pediatric dentists, and endodontists now have a superior and reasonably priced bioceramic. Dentists praise the multi-use NeoMTA Plus because it mixes more smoothly, is easier to dispense and the unique gel enables more stable placement, washout resistance and faster clinical setting.

New, stain-free light color:

Ideal for pediatric dentistry—won’t discolor teeth
Liquids such as sodium hypochlorite won’t cause discoloration

Multiple indications:

Pulp-capping to base/liner
Pulpotomies to apexification
Sealer to perforation repair
Root-end filling to resorption


Inhibits bacterial growth* *Tested in vitro. Not a disinfectant

Grey MTA Plus is a bioceramic tricalcium silicate-based Dental Cement, which is slightly more radiopaque than (white) MTA. The light silvery color of MTA Plus is visible during placement. Grey MTA Plus is indicated for both Vital Pulp Therapy and Endodontic procedures. General dentists and endodontists praise the multi-use Grey MTA Plus because it mixes more smoothly and is easier to dispense. The unique gel enables more stable placement, washout resistance and faster clinical setting.

Multiple indications:

Pulp-capping to Base/Liner
Pulpotomies to Apexification
Sealer to Perforation Repair
Root-end Filling to Resorption

New, light grey color:

More radiopaque than the leading white MTAs
Visible for precise placement
Inhibits bacterial growth in vitro of Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa.

Better mixing, handling and placement:

Finer powder mixes more easily and smoothly
Dispense as little as 0.1 gm
Unique gel for stable placement
Washout resistant
No special equipment required

Smart, convenient packaging:

Protects fine powder in desiccant-lined bottle
Easy to dispense powder as needed
Dropper-tip gel bottle minimizes waste